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Section I:  Project Summary 

1.  Overview of Project 

Numerical simulations of aircraft landing on a carrier are difficult due to complex geometry 
and complex flow physics. The flowfield is very unsteady and chaotic and adequate mesh 
resolution is crucial to a successful simulation. The goal of the proposed research is to deliver 
enhanced mesh adaptation capabilities that account for the chaotic unsteady nature of the 
flowfield about an aircraft in the landing approach path. Similar work was published by Shipman, 
et. al. [Shipman, Arunajatesan, Cavallo, Polsky] 

The objectives of the research are to explore three distinct mesh adaptation methods to handle 
the dynamic aspect of this case. The three methods include a hierarchical-Cartesian hexahedral 
method, an all-tetrahedral mesh method and a physics-based point placement/meshless method. 
The hierarchical method will subdivide cube-shaped elements to resolve geometry and gradients 
of user-selected adaptation functions, such as pressure or Mach number. The tetrahedral method 
is a traditional unstructured mesh method that incorporates adaptation through node movement to 
resolve gradients of the adaptation function. The third method is a meshless method that uses a 
physics-based force model to move nodes around to resolve the geometry and flowfield. 

The initial phase of the research conducted the first year developed steady-state analysis 
procedures for each method, with appropriate mesh adaptation capabilities. A description of the 
steady-state version of the three computer codes (TetFlow, OctFlow and PointFlow) is described 
in this report. 

The outcome of the research will provide insight into efficient and robust approaches for 
adaptive meshing for dynamic simulation of aircraft landings in the presence of unsteady carrier 
flowfield. Research is conducted assuming inviscid flow, but approaches will be applicable to 
viscous simulations with modifications. 

2. Activities this period 

Three Computational Fluid Dynamics (CFD) codes were developed to serve as test bed for 
research into adaptive mesh generation techniques. The three codes all solve the unsteady Euler 
equations, but use different discretization strategies. The target application is an aircraft in a 
landing approach to a carrier. In general terms, the first year of this project focused on generating 
the baseline steady-state capability of the three codes running in serial. This will include adaptive 
mesh generation capabilities for all codes. The second year will address the unsteady moving 
body/mesh capability. And finally, the third year will explore efficient parallel implementations 
of the codes. The steady-state capabilities of the three codes (OctFlow, TetFlow and PointFlow) 
are described below. This is followed by common validation cases analyzed by all three codes. 

OctFlow 

  



  

The Cartesian code OctFlow has capabilities similar to the SPLITFLOW code developed by 
Lockheed Martin. OctFlow utilizes an Octree data structure and performs cut-cell operations at 
geometry boundaries. A second-order spatial finite-volume scheme has been incorporated with 
explicit first order backward time integration. The Cartesian mesh is generated automatically 
based on the input geometry, which is supplied as a triangulated surface mesh. The cells 
intersected by the geometry are handled using the “cut-cell” approach, which is basically creating 
arbitrary polyhedral elements with appropriate surface boundary conditions. Any cells completely 
outside the computational domain are tagged external and not solved in the flow solution. 
Examples of this mesh generation process are shown in Figure 1 through Figure 4. Cell gradation 
is controlled in the mesh generation process. For example, at least two cells of one resolution are 
enforced before transitioning to a different cell size. 

 
Figure 1. OctFlow mesh for sphere. 

 

 
Figure 2. View of surface polygons resulting from 

cutting. 
 

 
Figure 3. Cartesian cell remain whole. 

 

 
Figure 4. OctFlow mesh near tower of notional aircraft 

carrier. 
 

 

OctFlow solves the integral form of the Euler equations, shown below. This is currently 
discretized in time using an explicit, first-order backward differencing scheme.  

  



  

 

Volume averaged flow variables are stored at cell centers, which would be the centroids of the 
elements. Away from boundaries this would simply be the middle of the cube. Spacial 
discretization is accomplished using a second-order upwind extrapolation scheme, shown in 
Figure 5. This is a two-dimensional depiction of extrapolations from cell centers to the element 
faces. The green line represents a boundary. Primitive variable data is extrapolated in the 3 
cardinal directions (X, Y and Z) from both sided of the face. Extrapolations of those “left” and 
“right” states are limited using a minmod type limiter. The extrapolated, limited values are 
provided to a Roe Flux Difference Split scheme for the face. 

 
Figure 5. Face data is obtained through upwind extrapolation from cell centers. 

 
 

Adaptation is achieved through refinement and de-refinement of the hierarchical Cartesian mesh. 
The user may select from a current list of four adaptation functions; density, velocity magnitude, 
pressure or Mach number. Scalar spacing values are computed for each leaf of the mesh (a leaf is 
the finest level element done each branch of the Octree). That scalar spacing value is combined 
with an extent box based on the size of the leaf element. This size packet is passed down the 

 
 

 

  

 

  



  

Octree, forcing refinement. The scalar spacing value is computed using the gradient of the 
adaptation function, shown in the equations below. An element adaptation function, AF, is 
computed using the magnitude of the gradient of the adaptation function for the element 
multiplied by a length scale, l, raised to a power p. The length scale is simply the cube root of the 
element volume. The exponent power is user defined and should be a value greater than one. The 
mean and standard deviation of AF is computed. Then a de-refinement threshold, AFd, and a 
refinement threshold, AFr, are computed. An element is marked for deletion if it’s adaptation 
function and all of it’s siblings’ adaptation function is below AFd. If an element has an AF greater 
than the refinement threshold then a spacing value is computed by solving the first equation 
below for the scalar spacing value (l is replaced with s). 

 

An example of adaptation is shown in Figure 6 and Figure 7. The symmetry plane volume mesh is 
shown in both figures. The adaptation function was pressure. Finer resolution elements are clearly 
visible where the gradients of pressure are highest. 

 
Figure 6. Symmetry plane cut through OctFlow mesh 

colored by pressure and displaying contours of 
pressure. 

 
Figure 7. Close-in view of sphere surface and symmetry 

plane cut of mesh, colored by pressure. 

 

The baseline serial capability for OctFlow has been completed. Validation cases are underway. 
The plans for the next phase include implementing a 2nd order time integration scheme, either 
BDF2 or some form of hierarchical multi-grid scheme (Octree is a natural platform for multi-
grid). In addition the moving body capability will be implemented. This involves grid speed terms 
for the boundary conditions. The volume mesh does not move. The boundaries move through the 

  



  

volume mesh, so grid speed terms are not required for the Cartesian mesh. However, certain 
volume elements will pass in and out of existence, with respect to the solution domain. This must 
be handled in a time-accurate, conservative and consistent manner. 

TetFlow 

The code TetFlow has been developed as the test bed for more traditional unstructured solvers. It 
is a node-centered, finite-volume scheme for meshes comprised of tetrahedral elements only. It 
solves the Euler equations using second order spacial differencing and up to second order 
temporal differencing. The discrete set of equations for the implicit BDF scheme is shown below. 
[Biedron, Thomas] Pseudo-time stepping, Δτ, sub-iterations are used to advance the solution in 
physical time, Δt. 

 

The Geometric Conservation Law portion (shown in red) has not been implemented yet. 
Temporal accuracy of the BDF scheme is controlled through the Φ coefficients, shown in the 
Table 1. [Biedron, Vatsa, Atkins] 

Table 1. Coefficients for BDF schemes 

Order Φn+1 Φn Φn-1 
1st 1 -1 0 
2nd 3/2 -2 1/2 

 

The control volume surrounding each node is the median dual comprised of mid-edge, mid-face 
and cell centroids. Upwind extrapolations of primitive variables to the mid-edges are performed 
to achieve second order accuracy. Minmod type limiters are used when strong discontinuities are 
present. The extrapolation gradient is based on weighted averaging or cell gradient from the 
upwind direction, shown in Figure 8 and Figure 9. Roe’s FDS scheme is then used to compute the 
fluxes at the control volume boundaries. 

 

  



  

 
Figure 8. Cell based gradient vector from upwind 

direction (indicated by dash lines) are used to create 
nodal gradient vector. 

 

 
Figure 9. Weighted nodal gradient vector is used to 

extrapolate to mid-edge. 

 

In anticipation of dynamic movement of boundaries a novel mesh-smoothing scheme has been 
developed based on mesh optimization techniques. The basic optimization method used condition 
number to define a cost function, C, for each element. [Freitag, Knupp] If the element is inverted 
the cost is based on the Jacobian, J, which will be negative. Otherwise the condition number is 
used. The condition number, CN, for an element is constructed from the product of the Frobenius 
norm of the matrix product of A and W and their inverses. A is the matrix whose columns are the 
edge vectors from the tetrahedron, shown in Figure 10. The weight matric, W, is created by 
assembling the coordinates of the corners of an ideal element. This transforms a right-angled 
tetrahedron to a regular (equilateral) tetrahedron. 

           

 

The condition, as defined, is unique to a tetrahedron irrespective of which corner is used. The cost 
function will be zero for an ideally shaped element, approach one as the element collapses and be 
greater than one for inverted elements. The goal of the mesh-smoothing scheme is to minimize 
the cost of each element. 

  



  

 

 
Figure 10. Edge vectors used in the construction of the 

element condition number. 
 

 
Figure 11. Coordinates of the reference element. 

 

Node-based cost values can be constructed by averaging the surrounding element cost values. 
Perturbing nodes in multiple directions and testing the new value of the node-based cost achieved 
optimization. This is extremely expensive. 

The modified approach developed under this grant uses sensitivity derivatives of element cost 
values with respect to each node in the element. This will be explained in two dimensions with an 
obvious extension to 3D. Figure 12 shows a high aspect ratio triangle in red. The vectors 
emanating from the corners represent the sensitivity vector of the element cost with respect to 
each node. The ideal triangle is shown in black. Moving the nodes in the directions of the arrows 
will increase the element cost. A nodal perturbation vector is computed using cost-weighted 
averages of the negative of the sensitivity vectors, shown in Figure 13. The perturbation from 
each triangle is color coded with the triangle color. The cost-weighted vector is shown in black. 
The formula for computing the perturbation vector at the node is shown below. 

 

 
Figure 12. Cost sensitivity vectors for each node of red 

triangle. 
 

Figure 13. Cost-weighted node perturbation vector. 

 

A perturbation vector is computed for each node. Nodes are perturbed incrementally in an 
iterative fashion. New perturbation vectors are computed each iteration. Smoothing using this 
new scheme is significantly faster than the previous perturb-test, perturb-test approach. 

  



  

Adaptation was then added to the smoothing scheme by modifying the “ideal” element weight 
matrix. To begin, the coordinates of the reference element are generalized based on 6 valid edge 
lengths, d0-d5, shown in Figure 14. These edge lengths are relative, not absolute, with a 
maximum magnitude of 1. If all edges are unit length then the original W matrix is produced. 

            
Figure 14. Generalized reference element constructed from 6 valid edge lengths.            

 

Next a scheme was devised to compute the relative edge lengths for all edges in the mesh. 
Gradients of the adaptation function are computed at the nodes and averaged to the mid-edge 
locations, shown in the upper portion of Figure 15. The normalized edge vector,  , are squeezed 
in the direction of the edge gradient. If the gradient magnitude is zero or perpendicular to the edge 
no reduction in length occurs. A relative edge length for each edge in the mesh is computed in 
this manner. Next these relative edge lengths must be check to ensure valid reference elements 
are constructed. This involves ensuring that any three relative edges of a triangle in the mesh 
must form a valid triangle, shown in Figure 16. This is achieved by ensuring the sum of the edge 
lengths from the triangle are greater than or equal to a minimum perimeter distance. The user 
specifies the hmin value, typically on the order of 0.001. When this minimum perimeter distance is 
violated the shorter edges are extended to valid lengths. This is an iterative process over the entire 
mesh. 

 

  



  

 

 
Figure 15. Relative edges lengths are squeezed in the 

direction of the gradients. 

 
Figure 16. Relative edges lengths must form valid 

triangular faces. 
 

Examples of this type of adaptation are shown in Figure 17 and Figure 18. The domain is three-
dimensional with one layer of elements in the Z direction (in/out of the page). The mesh on the Z 
maximum face is shown in each case. These are analytically defined gradient fields. The user 
controls the level of adaptation through the Ac coefficient in the edge squeezing formula. 

 
Figure 17. Diagonal shock adapted mesh. 

 
Figure 18. Sine wave adapted mesh. 

 

An example of adapting to Mach number is shown in Figure 19. The mesh appears two-
dimensional, but is three-dimensional with on cell layer in the Z direction. The top portion of the 
figure shows the Mach contours. The bottom portion shows the mesh on the Z maximum face. It 
is clearly evident that adaptation is taking place to the reflecting shocks and expansion fans in the 
flowfield. 

  



  

 
Figure 19. Mach 2 supersonic flow through channel with adaptation to Mach number. 

 

This mode of mesh adaptation maintains a fixed number of nodes and fixed element connectivity.  

The baseline serial capability for TetFlow is operational. Validation cases are underway. The 
plans for the next phase include implementing an edge/face-flipping scheme via a tetrahedral 
mesh generation program to improve element quality as the bodies move through the domain. 
This has been tested on interior edges with great success. The ability to flip boundary face/edges 
is nearly complete. This tetrahedral meshing program can also be used to add and delete points. In 
addition the moving body capability will be implemented.  

PointFlow 

The code PointFlow has been developed as the test bed for untraditional meshless solvers. It is 
obviously node-centered and solves the differential form of the Euler equations using numerical 
differential quadrature. PointFlow generates the points and evolves the points as the solution 
develops. The code is currently first order in time and up to second order in space. 

Geometry is supplied to PointFlow as a triangulated surface mesh, usually the same surface mesh 
used by OctFlow and TetFlow. The initial point set is created from the corner points of the 
surface mesh (called critical points), selected points along boundary edge curves, selected triangle 
face centers and centroid points from an Octree-based volume mesh. The initial processed 
evolves the mesh several steps before any flow solution commences. 

Points are moved about via inter-particle forces between nodes. Two different force models are 
programmed. One involves repulsive forces based on Coulomb’s law and the other is an 
attractive/repulsive force model following the Lennard-Jones pair potential. These two formulae 
are included next to Figure 20. The “desired” distance between points is defined by the q variable. 
The desired distance between two nodes i and j is defined using σij. Each point has a collection of 
neighboring points in its cloud, shown as a dashed-line circle in the image. The total force on a 
node is the summation of the forces from the neighboring points in its cloud. 

  



  

Repulsive only  

  
 

Attractive and Repulsive 

 
 

 
Figure 20. Inter-particle forces are summed from 

neighboring points in the cloud. 
 

Points are iteratively moved in the direction of the summed force vector an incremental amount. 
The movement is governed by the equations of motion, shown below. We seek the steady-state 
position of the nodes so the drag coefficient and the starting velocity each step is set to zero. The 
mass is set to 1. The time-step is based on the proximity to neighboring points in a local time-
stepping approach or set to some global minimum value.  

 

As points move about some will try to leave the domain. Interior points that pass through a 
boundary are repositioned on the closest boundary. Points on a given boundary that try to pass to 
a neighboring boundary are reposition on the curve between the to boundaries. And points located 
at the critical points of the geometry remained fixed to that position. 

Point clouds are gathered for each node. The radius of the cloud is based on the closest neighbor 
distance multiplied by a user-defined parameter, typically in the range from 2 to 4. Interior points 
do not connect across the boundary to nodes on the other side. Boundary points do not connect to 
interior nodes they cannot “see”. Neighbor reciprocity is enforced where each point is in the 
cloud of its cloud points. 

  



  

Spacing values travel with the nodes as they move. A geometry-based spacing value, Sg, is 
constructed based on a blending of critical points spacing values, which are controlled by the 
user. The blending is simply an inverse-distance weighted average of the neighbors in the current 
point cloud. An adaptation delta, ΔAn , is combined with the geometry spacing value to define the 
final nodal spacing, Sn, shown below. Adaptation is based on the magnitude of the gradient of the 
user-selected function, such as density, pressure, velocity magnitude or Mach number. A 
threshold value of the gradient magnitude is computed from the mean and standard deviation 
values of the nodal gradient magnitudes. The adaptation delta is then the minimum of 1 and the 
ratio of the node gradient magnitude and the threshold. This delta multiplies the difference 
between the geometry spacing and the defined minimum spacing and is subtracted from the 
geometry spacing. 

 

The geometry-based spacing values for a ramp test case are shown in Figure 21. The size and 
color of these spheres is the geometry spacing value. As the solution develops the gradient of the 
selected adaptation functions evolve. The final adapted spacing values for the same case are 
shown in Figure 22. The size and color of these sphere is the final adapted spacing value. 

 
Figure 21. Geometry-based spacing values. 

 
Figure 22. Adapted spacing values. 

 

Points are added and deleted based on an overlap ratio. Overlap ratio measure the degree to which 
the spacing between each node is met. They are computed for each node and involve on the 
neighbors that are at a distance of 1.1 times desired distance between points, σij. Edge nodes are 
tested against other nodes on the same edge. Surface nodes are tested against other nodes on the 
same surface. Interior nodes are tested against all of its neighbors with the specified distance. The 

  



  

overlap ratio formulae are given below. They differ depending on the node characteristic; i.e. 
edge, surface or interior node. These are approximate formulae. 

 

Figure 23 is used to define the overlap ratios for edges and surface nodes. Edge node overlap 
ratios are basically normalized distances between nodes. When the nodes are at the proper 
distance the ratio will be near unity. Surface node overlap ratios are normalized projections of the 
spacing value projected onto the circle for the central node. The image on the right shows the 
projections of the neighbor bubble onto the central node, green circle. The formulae take into 
account different desired spacing values between the nodes. Again a unit value of the overlap 
ratio indicates the nodes are at the proper distance and have good coverage of the space. The 
extension of the method to interior nodes results in the normalized projection of the bubbles onto 
the sphere surrounding the central node. 

   
Figure 23. Overlap ratios for line and surface. 

During the refinement and deletion process nodes with an overlap ratio greater than a specified 
value, such as 3 or 4, are deleted. Nodes with an overlap ratio less than a specified value, such as 
0.25 or 0.5, are tagged and new neighbors are created near those points. Nodes with overlap ratios 
between these values are unchanged. 

The inviscid flow solution is computed using differential quadrature. The differential form of the 
Euler equations, shown below, is solved numerically using a first order backward differenced 
time integration scheme. The weight coefficients, wx, wy and wz, can be computed using either 
Basis Functions or Least Squares. The weights are vectors between the central node and its 
neighbors. The scheme can be conservative if certain properties are met. [Chiu, Wang, Jameson] 

 

 

 

  

 
 

  
 

 

  



  

Construction of the weights for a conservative scheme involves establishing a global system of 
equations and solving for the conservative weights. The solution of the global system can be 
expensive and would be impractical for the moving body cases if it was required each step. The 
resulting weights have the appearance of area vectors between nodes divided by a volume like 
term, analogous to a Finite-Volume discretization. An alternative was explored in two dimensions 
where a triangular mesh was constructed, the appropriate real Finite-Volume weights created and 
then the mesh was discarded. A similar approach will be implemented 3D once the tetrahedral 
mesher is fully operational. 

 

Some comments on the use of a tetrahedral mesh program in a “meshless” method are needed. 
There is truly no such thing as a meshless method. The point clouds provide connectivity to 
neighboring nodes, which is a form of a mesh. The tetrahedral mesh generator produces elements, 
which thereby provide connectivity to neighboring nodes as well. But the tetrahedral mesh 
version provides a much more efficient set of neighbor connections. It will produce significantly 
fewer neighboring points and will provide proper coverage of the space surrounding each point. 
And the direction of the research will be such that small regions of the space can be tessellated 
with the tetrahedral mesh program and processed for the weights instead of the entire domain. 
This is especially true for parallel. 

The weights operate on fluxes computed at the midpoint between the central node and its 
neighbors. This is shown in 2D in Figure 24 between two nodes. There associated cloud of 
neighbors is also shown. Second order spacial accuracy is achieved by extrapolating primitive 
variables to this midpoint location from upwind directions, i.e. left and right directions depicted 

in Figure 25. The gradient vectors  and are computed using weighted averages of 
gradients from neighbors in the upwind directions, shown in blue and red in the figure. A 
MinMod type flux limiter is used to prevent extrapolations to negative pressure or density. 

 

  



  

 
Figure 24. Mid-point location between nodes where flux is constructed. 

 
Figure 25. Extrapolations from upwind direction produce second order accuracy. 

 

The baseline serial capability for PointFlow is operational. Validation cases are underway. The 
plans for the next phase include implementing Finite-Volume version of the weights by using the 
tetrahedral mesh program. A second order implicit BDF2 scheme will be installed. In addition the 
moving point capability will be implemented.  

Validation Cases 

Several cases are being used to validate the flow solvers and mesh adaptation schemes. These are 
relatively simple configurations and are being solved on small workstations. The preliminary 
results for each case and each code are shown below. 

Supersonic ramp: 

The first case is a Mach 2 flow over a 10-degree wedge, shown in Figure 26. The geometry 
appears two dimensionally, but is actually three dimensional by extension in the Z direction (out 
of the paper). This case has one distinct feature, the shock, which all three codes capture. 
Adaptation is performed based on the gradients of Mach number. OctFlow and TetFlow show 
very crisp resolution of the shock. OctFlow refines heavily in the shock region. TetFlow squeezes 
the mesh in the normal direction of the shock. PointFlow redistributes points near the shock and 
reduces the spacing value at the shock, but shows some smearing of the shock, most likely due to 

L R 

i j 

L R 

  



  

the Least-Squares quadrature and large point clouds. PointFlow was unstable if a smaller point 
cloud radius was used, as this caused some point clouds to be biased to one side with improper 
coverage of the space. 

 
 
 
 
 

Mach 2 Inviscid Flow 
Adapted to gradients of Mach number 

 
OctFlow 

 
PointFlow 

 
TetFlow 

Figure 26. Supersonic flow over 10-degree wedge. 

 

Onera M6: 

The second case is the Onera M6 wing in transonic flow. This is a popular validation case and 
provides an opportunity to compare results from the codes with experimental data. Figure 27 
shows results from the three codes. The color and line contours are for pressure. The OctFlow and 
TetFlow results are plotted on the same scales. PointFlow has preliminary results that are 1st order 
in space. 

 

  



  

 
 
 

Mach 0.8395 
AOA = 3.06 

Inviscid 
Adapted to pressure gradient 

 
OctFlow 

 
PointFlow – Preliminary 1st order 

 
TetFlow 

Figure 27. Onera M6 transonic case 

The mesh adaptation from TetFlow is displayed in Figure 28 and Figure 29. Adaptation of the 
elements near the shock is evident. Alignment of edges on the symmetry plane ahead of the shock 
is also evident. 

  



  

 
Figure 28. Symmetry plane and wing surface mesh for TetFlow. 

 
Figure 29. Magnified view of wing surface mesh near tip. 

 

A preliminary look at the spacing parameters for PointFlow is shown in Figure 30. The spheres 
are sized using the geometry spacing. The colors for the images on the left are modified to 
highlight the differences in the spacing values for the nodes near and on the surface. The adaptive 
spacing delta values clearly identify where the shock is located. 

  



  

 
 
 
 

Spheres sized by geometry spacing 
Color scales modified to highlight nodes near 

wing 

 
Geometry Spacing 

 
Adaptive Spacing Delta 

 
Final Combined Spacing 

Figure 30. Preliminary results of PointFlow size parameters for M6. 

Comparisons of TetFlow and OctFlow results with experimental data are shown in Figure 31 and 
Figure 32. The shock is crisply resolved in both cases and the codes compare well with each 
other. Comparison with data is considered very good for inviscid solutions. 

 

 
Figure 31. Station 2 results from TetFlow, original and 

adapted. 

 
Figure 32. Adapted TetFlow and adapted OctFlow 

comparison at station 2. 
 

  



  

Eglin Wing/Pylon/Store: 

The final case is the Eglin wing with a pylon and store. This is another popular validation case. It 
has experimental force and pressure data for a prescribed motion of the store on the sting mount. 
Results from the three codes are shown in Figure 33. Color contours of pressure are shown. The 
contour scales for OctFlow and TetFlow are the same. The PointFlow results are preliminary and 
1st order in space. 

 
 
 

Mach 0.95 Inviscid 
Adapting to pressure 

Color scales are equivalent for OctFlow and 
TetFlow 

 
OctFlow 

 
PointFlow – Preliminary 1st order in space 

 
TetFlow 

Figure 33. Eglin Wing/Pylon/Store comparisons. 

Several views of the mesh adaptation within TetFlow are shown in Figure 34. Shock structures 
are evident without displaying the solution contours. There is a reflected shock shown on the 
underside of the wing near the symmetry plane. This illustrates the adaptation that is taking place 
throughout the mesh, not just at the strong shock regions. 

  



  

 
 

Surface meshes 
Adapted to pressure gradient 

 

 

 
Figure 34. Various views of the surface meshes adapted to pressure gradient. 

A preliminary look at the spacing parameters for PointFlow is shown in Figure 35. The spheres 
are sized by the geometry spacing values. The color ranges are different for each plot to highlight 
the nodes near the wing and store. The adaptive delta values are identifying the high pressure 
gradient regions near the leading and trailing edges and, to a lesser extent, the shock regions. The 
PointFlow solution is preliminary and 1st order accurate in space. 

 

 
Spacing values for Eglin WPS 

 
Spheres sized by geometry spacing 

 
Geometry spacing range 0.05 – 0.5 

Adaptive delta range 0 – 1 
Final combing spacing range 0.05 – 0.25 

 
Geometry Spacing 

  



  

 
Adaptive Delta Spacing 
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Figure 35. Various spacing values for Eglin WPS PointFlow solution. 

3. Significance of Results 

The goals for the first year are to have working serial versions of all three codes for simulating 
pseudo-steady analyses. All three codes are at that state of capability, although only TetFlow has 
enhanced time integration through second order implicit time differencing.  

Validation cases are under way using the three codes to document the performance of the three 
methods and the benefits of the mesh adaptation techniques. The current cases have known 
analytical or experimental data to compare with. A combined carrier/aircraft case is under 
development to allow the pseudo-steady analysis of the landing trajectory using all three codes. 

4. Plans and upcoming events for next reporting period 
 
The second year of the project will focus on the time accurate simulation of body movement 
through the domain. This will require completing the implementation of grid speed terms and 
Geometric Conservation Law enforcement in all codes.  
 
The adaptive mesh smoothing technology will be presented at the AIAA conference in January in 
Kissimmee Florida. This will also be submitted to the AIAA Journal for publication. 
 
5. Recommended reading 
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6. Transitions/Impact  

The new mesh optimization scheme developed for TetFlow has been extended to hybrid 
meshes and incorporated into the production mesh-smoothing tool, P_OPT, used at the 
SimCenter. Master’s student, Yanan Gong, in her research on time dependent moving body 
simulations, also uses this improved method and will defend her thesis in November. 

The point generation scheme used by PointFlow will be the implemented by Ph.D. student Philip 
Fackler to provide points to the tetrahedral mesh code for general use at the SimCenter. 

 
7. Collaborations 
Technology used by OctFlow is frequently discussed with Matthew O’Connell, a UTC Ph.D. 
student employed at NASA Langley as a coop student. He is researching approaches to perform 
large-scale parallel simulations. 
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